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Higher-order versions of Godunov's method have proven highly successful for bigh-Mach-number 

compressible flow. One goal of the research being described in this paper is to extend the range of applica

bility of these methods to more general systems of hyperbolic conservation laws such as magnetohydro

dynamics. flow in porous media and finite defonnations of elastic-plastic solids. A second goal is to apply 

Godunov methods to problems involving more complex physical and solution geometries than can be treated 

on a simple rectangular grid This requires the introduction of various adaptive methodologies: global mov

ing and body·fitted meshes, local adaptive mesh refinement. and front tracking . 

Extension of the Godunov methodology to other systems of equations is more difficult due to the pres

ence of pathologies in the local wave structure which do not appear in gas dynamics. In the applications 

listed above, one finds that the wave speeds are nonmonotonic functions along their associated wave curves 

in phase space. requiring more complicated entropy conditions to ensure physically realizable solutions. In 

addition. there are surfaces in phase space along which the linearized coefficient matrices fail to have a com

plete set of eigenvectors. We have developed an approximate Riemann problem solver based on a generali

zation of the Engquist·Osher flux that is suitable for these types of problems [1]. The initial test of the 

method has been for flow of a mnltiphase mixture of gas, oil and water in a porous medium. 1be underlying 

hyperbolic system consists of three cofl$ervation laws for the component densities and exhibits the degenera

cies cited above. An additional constraint that the ftuid fills the available pore volume leads to an associated 

parabolic system for pressure and total volumetric flow rate, which appear in the hyperbolic flux as spatially 

dependent terms. The first example i Fig. 1. shows gravity inversion in a core saturated with pure water in 

the top third, pure oil in the middle third and pure gas in the bottom third. In addition to the complex frontal 

structure shown in the figure. there is also a substantial drop in pressure (40%) arising from the mixing of the 

pure components. The second example. Fig. 2. shows a two-dimensional flow in which water is being 

injected along the left edge. and oil and gas are being withdrawn along the right edge. Gravity imposes a 

force in the (-y) direction, so we see some vertical structure in the solution. since the various phases in the 

problem have different mass densities. In addition to porous media flow this method is also being used to 

model shock-waves in solids [2] and for compressible magnetohydrodynamics [3]. 

The other facet of our development of Godunov methods is the introduction of adaptive methodology. 

To treat more complex flow and problem geometry we have extended the second.order unsplit Godunov 

method first introduced by Colella [4] to a logically-rectangular moving quadrilateral mesh [5]. This algo

rithm is based on an upstream-centered predictor-corrector fonnalism. with the conservative corrector step 

using finite-volume differencing. The method is second-order accurate for smooth solutions on smooth grids, 

has a robust treatment of discontinuities with minimal numerical diffusion, and is freestream-preserving. Fig

ure 3 shows a comparison of a numerical solution with experimental data of Zhang and Glass [6] for shock 

diffraction. A body-fitted quadrilateral grid is generated using a bihannonic solver. so that it is smooth, 

though not orthogonal. Nonetheless, there is no difficulty resolving this complicated time-dependent flow 
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pattern. (See Glass et al [71 for a more detailed comparison.) In figure 4, we show an example of a moving 

grid calculation. namely, a self-similar ramp shock reflection. At the initial time. an algebraic grid is gen

erated. Then each comer of the grid is given a velocity proportional to its initial location, so that the self

similar reftection pattern approaches a discrete steady state on the moving grid in the limit of long times. 

We are also developing other adaptive methods aimed at focusing computational effort where it is 

needed. In figure S, we show a result obtained by coupling the adaptive mesh refinement algorithm of 

Berger and Colella [8] for shock hydrodynamics to a volume-of·ftuid type algorithm for tracking an interface 

between two materials. In the adaptive mesh refinement algorithm. the mesh is locally refined in space and 

time in response to the appearance of large errors or features in the solution. Refined regions may appear or 

disappear as a function of time; also. there may be multiple levels of refinement 1be multiftuid algorithm is 

coupled to an operator split Godunov method f although operator splitting is not essential. In the approach 

taken here. only the thermodynamic discontinuity is tracked. There are multiple values for the density and 

energy for each cell. but only a single velocity per cell, so that any slip that forms along the interface is cap

tured. The figure shows a comparison to experimental data of L. F. Henderson [9] for shock refraction by an 
oblique material interface. This methodology is being used in a more detailed study of slow·fast refraction 

[10]. A second application of the multifluid-local refinement algoritlun is shown in Fig. 6. 1b.e figure con
tains the result of a calculation of the interaction of a shock with a dense spherical cloud [11]. TIle calcula

tion was done in cylindrical geometry. with the axis of symmetry located along the left edge of the domain. 

There are two levels of refinement. each by a factor of fOUT. The finest grids are outlined with boxes in the 

figure; thus it is apparent that at late times, the finest grids are reserved for the cloud, which in this problem 

is the region of greatest interest to us. The multiftuid tracking eliminates a large class of diffusive enors 

from the transport of the cloud material To have perfonned this calculation on an equivalent uniform grid 

would have taken 10 times as much CPU time. and 5 times as much memory. 
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Fig. I. Tune history of three component gravity inveISion using 240 grid points. Left edge is the bottom; 
right edge is the top. 

Time = 120 Days 

Time = 240 Days 

Time =: 360 Days 

Fig.2. Contour of gas coffiJXment density for two-dimensional waterflood on 240 x 80 grid. 
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Density contours 
440 x 220 grid 

Experimental Interferogram 
of Zhang and Glass 

Fig.3. Comparison of numerical solution with experiment for shock diffraction over a half...ruamond cylindC'Z. 
Shock Mach number is 2.45. 

Density contours at early time 

Stationary density contours on expanding grid 

Fig. 4. Self-similar ramp reflection on a moving quadrilateral grid. 
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Logarithmically spaced density contours Schlieren photograph (courtesy of L. F. Henderson) 

Figure S. Shock refraction from an oblique material interface. 
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Fig.6. Refraction of a planar shock by a dense spherical cloud 
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